Dyer lab

From left to right: Edgar Scott, Bioinformatics Analyst,  Dr. Lydgia Jackson, Research Assistant Professor,   Michael Day, Research Assistant III,   David Dyer, OK-INBRE Bioinformatics Core Director.

Bioinformatics Core Director 

David Dyer, Ph.D.
Microbial Pathogenesis and Microbial Genomics
University of Oklahoma Health Sciences Center
Biomedical Research Center, room 362
975 NE 10th Street
Oklahoma City, OK  73104
405.271.1201  x1 


The OK-INBRE Bioinformatics Core

Biomedical research has evolved into an increasingly technology-driven endeavor and like the rest of society, has become critically dependent on computational tools and methods for data analysis, archiving and retrieval. This is particularly true as NIH moves into the era of Big Data. The OK-INBRE Bioinformatics Core supports this continuing evolution within the state of Oklahoma, by providing bioinformatics support for both the Oklahoma research and educational enterprises. Collectively, these efforts will enhance the competitiveness of Oklahoma investigators for local, state and national funding, and increase the pool of skilled young biomedical research scientists in Oklahoma.

Research Support. Our mission is to enhance Oklahoma research expertise and infrastructure by providing state-of-the-art bioinformatics support to investigators performing biomedical research on the campuses that participate in the Oklahoma IDeA Network. We currently provide bioinformatics research support for over 150 investigators in the state, enriching many scientific disciplines including cancer biology, cell and developmental biology, diabetes and microbial pathogenesis. This breadth demonstrates the wide-ranging power of bioinformatics to advance biomedical research. Our services include DNA sequence data cleanup and analysis of DNA sequence-based experiments including microbial genome sequencing and annotation, RNA-seq and ChIP-seq analysis, 16S rRNA-based microbiomics. Where possible, we will train laboratory personnel in the analysis of these data using commercial software that exploits a graphical user interface, to avoid the necessity of working on the command line to analyze this data. We also provide access to the Ingenuity Pathway Analysis (IPA) software suite, which is essential for exploring whole transcriptome data obtained from eukaryotic cells. If you need access to the IPA software for your project, please contact Dr. Dyer at the email address above to arrange for a user account. In all your studies, we strongly suggest that you contact us before you begin experiments that will require bioinformatics support, so that we can advise on your experimental design. A well-organized experiment is crucial for obtaining a statistically robust outcome for many of these experiments. In addition to these services, we have experience in protein structure modeling, including the analysis of protein interactions with small molecules for drug and inhibitory design. Support for other custom bioinformatics applications is available as needed. Please contact us for more details. As needed, we also will partner with the newly established OK-INBRE Proteomics Core to support your discovery and targeted proteomics experiments.

Educational Support. We also provide support for bioinformatics education at Oklahoma IDeA Network PUI and CC institutions, by offering didactic coursework and hands-on computing laboratories, including laboratory exercises in DNA Barcoding and 16S rRNA-based Microbial Ecology. These classes have enriched the educational experiences of undergraduate students, graduate students and high school science teachers in the state. We also provide custom lecture material on other topics such as structural bioinformatics and phylogenetic analysis. Currently, we are expanding these educational efforts to include graduate students and postdoctoral fellows on the OUHSC campus, and faculty on all IDeA Network campuses. These bioinformatics educational efforts will stimulate the movement of promising students into the post-graduate education pipeline, foster the career development of young biomedical scientists at all stages of their training, and enable the use of state-of-the-art bioinformatics tools by Oklahoma investigators.